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Image segmentation using genetic algorithm and morphological operations 

MingYu 

Major Professor: Lalita Udpa 

Iowa State University 

Image segmentation is a fundamental component of picture processing and image 

analysis. Segmentation of an image entails the division or separation of the image into 

regions of similar attributes. The most basic attribute for segmentation is the image 

intensity (luminance for a monochromatic image). Several classical methods for image 

segmentation exist and it is well known that these methods are more or less heuristic and 

specific to a particular application. 

Genetic Algorithms (GA) are stochastic search methods, the functioning of which 

is inspired by laws of genetics, natural selection and evolution of organisms. Their main 

attractive characteristic is the ability to deal with hard combinatorial search problems 

efficiently, where parallel exploration of the search space, eliminates to a large extent the 

possibility of getting stuck in the local extrema. The basis of the theory is that individuals 

tend to pass on their traits to their offspring and the fittest of the individuals tend to have 

more offsprings. In effect, the tendency is to drive the population towards favorable traits. 

Over long periods of time, entirely new species are produced which are better adapted to 

a particular ecological condition. 

This thesis proposes a simple and robust method for image segmentation that is 

based on the application of Genetic Algorithm and Mathematical Morphology. The image 
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is divided into nonoverlapping subimages and the genetic algorithm is applied to each 

subimage, starting with initial random populations. Each individual of the population is 

evaluated using an appropriate fitness function. The best-fit individuals are selected and 

mated to produce offsprings to form the next generation. Morphological operations are 

used to produce the next generation along with the crossover and mutation operators. The 

algorithm converges to yield the final segmented subimage. These segmented subimages 

then are combined to form the final result. The feasibility of applying genetic algorithm 

and morphological operations to an image segmentation problem is evaluated and results 

are presented and discussed. 
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ABSTRACT 

This thesis presents an image segmentation procedure that uses genetic algorithm and 

mathematical morphology for optimizing a criterion function. The image is divided into 

subimages and segmentation algorithm is applied to each subimage, starting with initial 

random populations. Each individual of the population is evaluated using an a fitness 

function. The best-fit individuals are selected and mated to produce offsprings that form 

the next generation. The morphological operation is used to produce the next generation 

along with the crossover and mutation operators. The algorithm converges to yield the 

segmented subimages. These segmented subimages then are combined to form the final 

result. The performance of genetic algorithm and morphological operations to an image 

segmentation problem is evaluated with respect to various parameters and the results are 

presented and discussed. 
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CHAPTER 1. INTRODUCTION 

A digital image is represented by two-dimensional array or matrix of numbers. Digital 

image processing is the manipulation of images by computers. It has many applications in 

diverse areas such as telecommunication, medical imaging, graphic arts, remote sensing etc. 

In the past several years, many new digital image processing and analysis techniques have 

been developed. Image processing system plays a very important role in scientific, industrial, 

medical and space applications. Present trends indicate a continuation of the explosive 

growth of digital image processing applications well into the next century. 

At its most basic level, digital image processing requires a computer upon which to 

process images and two pieces of special input/output devices: an image digitizer and an 

image display device. A typical image analysis system performs the following operations: ( 1) 

acquisition, (2) storage, (3) processing, (4) communication, and (5) display. The basic image 

processing operations consist of (1) formation, (2) restoration, (3) enhancement, (4) coding, 

(5) compression and (6) analysis. 

Digital image processing comprises a broad range of hardware, software, and components 

ranging from simple image enhancement to more complex processing and classification of 

image data [ 1]. A schematic of the overall system is given in Figure 1.1. 

As shown in Figure 1.1, the first step in image processing is image acquisition: the sensor 

system specially designed to view a scene and provide a digital representation; or conversion 

of image data from an existing medium into a digital format (A-D conversion) e.g. scan and 
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Figure 1.1 Fundamental steps in digital image processing 

digitize an aerial photograph. Each digital image formation system introduces a geometrical 

distortion, noise, and nonlinear transformations. 

The next step deals with preprocessing of the image which typically involves procedures 

for image restoration and image enhancement. Digital image restoration is commonly defined 

as the processing of the measured image data to compensate for artifacts introduced by the 

image acquisition system. Digital image enhancement tries to improve the image quality by 

enhancing contrast, removing noise etc. Due to the fact that digital images usually require a 

very large amount of memory for their storage, it is very important to reduce the memory 

requirements for image storage and transmission. Digital image compression and coding 
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reduce and compress the image information content by taking the advantage of the 

information redundancy existing in an image. 

The third step deals with image analysis. Image analysis is the interpretation of the 

information content in an image data. It usually consists of image segmentation, image 

description (feature extraction), and image recognition (classification). Image segmentation 

partitions an input image into its constituent parts or objects. It entails division of an image 

into regions of similar attributes. Several methods have been developed for image 

segmentation including thresholding, clustering, region method, boundary detection, texture 

method and adaptive method. Image description, also called feature selection, involves 

extraction features that are basic for differentiating one class of objects from another. These 

features include spatial features, edges and boundaries, textures etc. Image recognition is the 

process that labels an object in the image based on information provided by the features. In 

this step, objects with identical features are grouped together under a certain class. 

Techniques for recognition include clustering, neural networks, decision trees, and spanning 

trees. 

Due to the variety of application of digital image analysis, a multitude of algorithms has 

been presented in literature in all the areas mentioned above. Among these, algorithms for 

object identification and image segmentation are of prime interest. In medical diagnostic 

imaging, image segmentation is mainly used to process different images obtained using 

multiple projection methods such as CT, MRI, PET. These images are used to detect tumors 

and other disorders. Several classical methods for image segmentation such as thresholding, 
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clustering, edge detection and thinning have been developed for segmenting different types of 

images. 

This thesis proposes a new and simple approach for image segmentation that is based on 

genetic algorithm and mathematical morphology. Although GA (Genetic Algorithm) 

techniques have been applied extensively in optimization problems including some areas in 

image processing. The application of genetic algorithm in combination with morphological 

operation in image segmentation is investigated and the results are very encouraging. 

The rest of the thesis is organized as follows. Chapter 2 describes the general methods of 

image segmentation. The basic morphological operations are explained in chapter 3. In 

chapter 4, an introduction to genetic algorithms has been provided and their important 

elements are explained. The new image segmentation algorithm based on genetic algorithms 

and morphological operations is discussed in chapter 5. The results of implementation of the 

algorithm developed in this thesis on simulated images are described and discussed in chapter 

6. These results help in choosing the parameters of the algorithm as well as improving the 

performance of the algorithm. A discussion of the performance of the proposed approach and 

conclusive remarks are finally presented in chapter 7. The scope for future work is also 

pointed out in this chapter. 
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CHAPTER 2. IMAGE SEGMENTATION 

2.1 Introduction 

Image segmentation is an important and a low-level task in digital image processing. 

Segmentation of an image entails the division or separation of the image into regions of similar 

attributes. The most basic attribute for image segmentation is image amplitude-luminance for 

monochrome images and color component for color images. All subsequent interpretation tasks 

- feature extraction, object recognition and classification - depend heavily on the quality of 

the segmentation process. 

There is no fundamental theory of image segmentation. In other words, no general methods 

have been found that perform adequately across a diverse set of imagery. As a consequence, no 

single standard method of image segmentation has emerged. Rather, there are collections of 

methods that have received some degree of popularity. It would be useful to have some means 

of assessing their performance. Qualitative criteria for good image segmentation are [2][3]: 1) 

the segmented regions should be uniform and homogeneous with respect to some characteristic, 

such as gray level or texture, 2) region interiors should be free of holes and region boundaries 

should be smooth and spatially accurate, and 3) adjacent regions should be differing 

significantly based on the characteristic on which they are uniform. If one represents this criteria 

set in terms of a hypothetical function, then the problem of good segmentation is one of 

optimizing this objective function by selecting appropriate segmentation parameters. 



www.manaraa.com

6 

Generally speaking, there are three stages in image segmentation. The first is image 

preprocessing. In this stage, the image is visually improved. The second stage is initial object 

discrimination, where objects are grossly separated into groups with similar attributes. The third 

stage is object boundary cleanup, where object boundaries are reduced to single-pixel widths. In 

this final stage, noise clutter and other artifacts in the image are removed. 

There are several generic methods for the first and second stages of the image segmentation 

process. These techniques generally come from the image-enhancement class of digital image 

processing operations. There are also techniques of image morphological processing that are 

frequently used for the third stage boundary cleanup operations. Although it is not feasible to 

describe all the details of all the methods here, the fundamentals of some of the methods are 

discussed. 

2.2 Amplitude Segmentation Methods 

Several image segmentation methods are based upon the thresholding of luminance or color 

components of an image. 

2.2.1 Bilevelluminance thresholding 

Many images can be characterized as containing some object of interest of reasonably 

uniform brightness placed against a background of differing brightness. A distinguish feature 

that can be utilized to segment the object from its background. If an object of interest is white 

against a black background, or vice versa, it is an easy task to segment the object from the 

background. But when the observed image is subject to noise, especially when the object and 
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the background assume some broad range of gray scales, it is a little more difficult. If the 

background is nonuniform, then alternate approaches to segmentation have to be developed .. 

There are several analytic approaches for selecting a luminance threshold. One method is to 

set the gray scale threshold at a level such that the cumulative gray scale count matches an a 

priori assumption of the gray scale probability distribution. Another method is to set the 

threshold at the minimum point of the histogram between its bimodal peaks. 

If the background of the image is nonuniform, it is necessary to adapt the luminance 

threshold to the mean luminance level. This can be achieved by subdividing the image into 

small blocks and determining the best threshold level for each block. 

2.2.2 Multilevel luminance thresholding 

A recursive multilevel thresholding method can be used to achieve effective segmentation in 

some classes of image. In the first step of the process the image is thresholded to separate 

brighter regions from darker regions by locating a minimum between luminance modes of the 

histogram. Then histograms are formed of each of the segmented parts. If these histograms are 

not unimodal, the parts are thresholded again. This process continues until the histogram of a 

part becomes unimodal. 

2.3 Clustering Segmentation Methods 

Consider a vector of measurement at each pixel in an image. The measurement could be the 

neighborhood feature such as the moving window mean, standard deviation, or it could be point 

color components. If the measurement set is to be effective for image segmentation, data 
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collected at various pixels within a segment of common attribute should be similar. In this way, 

the data are tightly clustered in an N-dimensional measurement space. The N-dimensional 

measurement space is then subdivided into mutually exclusive compartments where each 

compartment envelopes typical data cluster for each image segment. The clustering 

segmentation concept is simple but the computational effort is intensive. 

2.4 Region Segmentation Methods 

2.4.1 Region growing 

Region growing is one of the conceptually simplest approaches to image segmentation; 

neighboring pixels of similar amplitude are grouped together to form a segmented region. In 

practice, constraints must be placed on the growth pattern to achieve acceptable results. 

2.4.2 Split and merge 

Split and merge image segmentation method is based on the quad tree data representation 

whereby a square image segment is broken (split) into four quadrants if the original image 

segment is nonuniform in attribute. If four neighboring squares are found to be uniform, then 

they are replaced (merged) by a single square composed of the four adjacent squares. 

The basic split and merge process tends to produce rather "blocky" segments because of the 

rule that square blocks are either split or merged. A modification of this process has been 

proposed by Horowitz and Pavlidis [4] where adjacent pairs of regions are merged if they are 

sufficiently uniform. 
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2.5 Boundary Detection 

One way to segment the image is to detect the boundary of each region where there is a 

significant change in attribute across the boundary. Edge detection is one of the methods to 

detect boundaries. After the edge map has been found, morphological operations can be used to 

thin the edge. 

A detected boundary may often be broken if the image is noisy or if the region attributes are 

similar between regions. In this case, edge linking techniques are very useful to bridge short 

gaps in such a region boundary. 

There are several edge linking methods: ( 1) curve fitting edge linking, (2) heuristic 

(Roberts) edge linking, (3) Hough transform edge linking, etc. All these methods have their 

advantages and disadvantages. Depending on the properties of the image under consideration, 

one may be better than the others. 

2.6 Texture Segmentation 

One approach to texture segmentation is to compute some texture coarseness measure at all 

image pixels and then detect changes in the coarseness of the texture measure [5]. Another 

approach is to detect the transition between regions of different texture. The basic concept of 

texture edge detection is identical to that of luminance edge detection. A histogram thresholding 

method of texture segmentation also has been proposed [6]. 
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2. 7 Adaptive Segmentation 

Selecting the right method and the appropriate set of algorithm parameters is the key to 

efficiently segmenting the image. But no segmentation method can automatically generate an 

"ideal" segmentation result in one pass in a range of different images encountered in real world 

applications. If the algorithm can not adapt to the variations in unstructured scenes, it will 

eventually yield poor results [7]. 

There are several factors that make the parameter adaptation process very difficult: 

1) The number of parameters present in a typical segmentation algorithm is very large 

2) The complex and nonlinear interactions among these parameters make it impossible to 

model their behavior. 

3) The objective function that represents the segmentation quality varies from image to image 

since variations between images cause changes in the segmentation results. 

4) The definition of the objective function can be a subject of debate because there is no single, 

universally accepted measure of segmentation quality. 

There is a need of an adaptive segmentation technique that can efficiently search the 

complex space of parameter combinations and locate the optimal results. There are adaptive 

threshold selection techniques for segmentation but these techniques do not accomplish any 

learning. 

Genetic algorithms are designed to efficiently locate an approximate global maximum in a 

search space. They have the attributes described above and show great promise in solving the 

parameter selection problem in the image segmentation. 
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The key elements of an adaptive image segmentation system are: 

1) A closed-loop feedback control technique, which provides an adaptive capability. 

2) A learning subsystem that optimizes segmentation performance and accumulates 

segmentation experience over time to reduce the effort needed to optimize subsequent 

images. 

3) Image characteristics are represented and manipulated using genetic structure. 

4) Image segmentation performance is evaluated using multiple measures of segmentation 

quality. Genetic Algorithm is an appropriate technique for the image segmentation. The 

combination of Genetic Algorithm with other search techniques will result in an efficient 

hybrid segmentation algorithm. These techniques include hill climbing (HC), morphological 

operation, etc. 

5) The learning subsystem is very fundamental and is independent of segmentation algorithms 

and sensor data (visible, infrared, ultrasonic, laser, etc.). The performance of the overall 

system is limited by the capabilities of the segmentation algorithm, but the results of a given 

image are optimal based on the evaluation criteria. 
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CHAPTER 3. MATHEMATICAL MORPHOLOGY 

3.1 Introduction 

In the context of mathematics and signal processing, "morphology" is used to describe a 

branch of non-linear transformations and filtering methodologies. Image morphology 

pertains to the study of the structure of the objects within an image. Morphological 

operations work to clarify the underlying structure of objects. This is done by further 

simplifying object boundaries to their most rudimentary single-pixel-wide outlines or 

skeletons. These outline and skeletal forms yield an object's most primitive essence. The 

beauty and utilities of mathematical morphology are in its set theory based formulation, 

which directly deals with shape and structure. 

It is very easy to apply mathematical morphology to image processing, especially to 

binary images. This is because that the black and white pixels naturally form two sets, the 

object and the background. The basic morphological operations are dilation and erosion. 

These operations enlarge or reduce an object in an image, based on another object called 

structure element. Although the basic operations are simple, they and their variants can be 

concatenated to produce much more complex effects, i.e. a wide range of morphological 

operations can be achieved by combining dilation and erosion with various structural 

elements. 

Mathematical morphology can also be applied to gray scale image processing with 3-

dimensional gray scale image surface presented as sets. One way to represent the sets of a 
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gray scale image is via a multilevel function, which is treated as a stack of binary corrections 

processed individually by morphological operations [8]. Another set representation is umbra 

of a gray scale image [9]. The umbra can be intuitively thought as the 3-D infinite space 

.. under .. the image surface. 

3.2 Binary Morphology 

The binary image is assumed to be composed of pixels that have one of two brightness 

values, either black (0) or white (255). Binary image morphological process works much 

like the spatial convolution group process. The morphological process moves across the 

input image, pixel by pixel, placing resulting pixels in the output image. At each input pixel 

location, the pixel and its neighbors are logically compared against a structuring element to 

determine the output pixel's logical value. 

The structuring element is an array of logical values. It is generally composed of square 

dimension of size 3x3, 5x5, and sometimes larger, depending on the application. Each 

logical value can take on the value 0 or 1 (off or on), or a third state of X which is the "don't-

care" state. 

The generalized implementation of the binary morphological operation is commonly 

referred to as the hit and miss transform. When the structuring element values match their 

respective input pixel values, we call the evaluation a "hit". Otherwise, it is a "miss". The hit 

and miss transform provides a convenient way to define numerous morphological operations 

[10]. 
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The two fundamental morphological operations are erosion and dilation. The erosion 

operation uniformly reduces the size of objects in relation to their background. The dilation 

operation - the inverse of the erosion operation - uniformly expands the size of the 

objects. Erosion and dilation operations are used to eliminate small-image object features, 

such as noise spikes and ragged edges. Various combinations of these operations provide the 

basis for many additional operations. 

3.2.1 Erosion 

Simple erosion is the process of eliminating all the boundary points from an object, 

leaving the object smaller in area by half width of the structuring element all around its 

perimeter. If the object narrows to less than three pixels thick at any point, it will be 

disconnected (into two objects) at that point. Mathematically, erosion is the morphological 

transformation that combines two sets using the vector subtraction of set element [ 11]. 

Erosion is useful for removing segmented image objects that are too small to be of interest. 

There are a number of definitions for erosion, which can be proved to be equivalent. 

General erosion of image B by structuring element S is denoted by B ® S and is defined by 

E = B ® S = {X, Y IS xy C B} (3.1) 

where Sxy is the setS translated to (x, y). 

The binary image E that results from erosion is the set of points (x, y) such that if S is 

translated so that its origin is located at (x, y), then it is completely contained within B. The 

structuring elementS may be visualized as a probe which slides across the image B, testing 

the spatial nature of B at each pixel. Figure 3.1 shows an example of erosion. Notice that the 
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pixels in the second row are not present in the image after erosion because the one-pixel 

wide horizontal line can not contain the two-pixel wide structuring element S. A more 

practical example shown in Figure 3.2 illustrates that the erosion basically shrinks the object 

by the size of structuring element. 

r-· • r • 
• • • • • • 

• • 
• s • 
• 

8 8®S 

Figure 3.1 A basic example of erosion 

s 

r--------- , 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I = I 
r-r---------1 

8 cl/2 B®S 

Figure 3.2 A practical example of erosion 
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3.2.2 Dilation 

Simple dilation is the process of incorporating into the object all the background points 

that touch it, leaving it larger in area by that amount. If the object is circular, its diameter 

increases by half width of the structuring element with each dilation. If two objects are 

separated by less than three pixels at any point, they will become connected (merge into one 

object) at that point. Mathematically, dilation is a morphological transformation that 

combines two sets using vector addition of set element [ 11]. Dilation is useful for filling 

holes in segmented objects. 

by 

General dilation of image B by structuring element S is denoted by B EB S and is defined 

D = B EB S = { x, y I S x,y f1 B ¢ 0} 

where Sxy is the setS translated to (x, y). 

(3.2) 

That is, the binary imageD that results from dilation is the set of points (x, y) such that if S 

is translated so that its origin is located at (x, y), then its intersection with B is not empty. 

Figure 3.3 illustrates an example of dilation. Figure 3.4 shows a more practical example. 

3.2.3 Properties of dilation and erosion 

In morphological dilation, the roles of the sets B and S are symmetric, i.e., the dilation 

operation is commutative 

BE9S=SE9B (3.3) 

But, in general, erosion is not commutative 
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Figure 3.3 A basic example of dilation 
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Figure 3.4 A practical example of dilation 
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B®S;eS®B (3.4) 

Dilation and erosion are increasing operations in the sense that, if set A c B , and set C 

is the structuring element, then 

(3.5a) 

(3.5b) 

Dilation and erosion are opposite in effect: dilation of the background of an object 

behaves like erosion of the object. This statement can be qualified by the duality 

relationship. 

A®B=AE9B (3.6) 

Dilation and erosion of the intersection and union of the sets obey the following 

relations: 

(AnB)EBC c (A EBC)n(BE9C) (3.7a) 

(A nB) ®C =(A ®C) n (B ®C) (3.7b) 

(A uB) ESC= (A E9 C) u(B EB C) (3.7c) 

(A u B) ® C ::::> (A ®C) u (B ®C) (3.7d) 

Dilation and erosion of a set by the intersection of two other sets satisfy these 

containment relations: 

A Ea(BnC) c (AEBB)n(A EBC) (3.8a) 
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A ®(B nC) =>(A ®B) u(A ®C) (3.8b) 

On the other hand, dilation and erosion of a set by the union of a pair of sets is governed by 

the equality relation: 

A ffi(B u C)= (A EBB) u (A ffi C) 

A ®(B uC) =(A ®B) u(A ®C) 

(3.9a) 

(3.9b) 

The following chain rules also hold for dilation and erosion because of the associativity. 

A E9 (B E9 C)= (A EBB) EBC 

A®(B®C) = (A®B)®C 

3.2.4 Opening and closing 

(3.10a) 

(3.10b) 

Dilation and erosion are often applied to an image in concatenation to form two other 

morphological operations, namely opening and closing. The process of erosion followed by 

dilation is called opening. The opening of image B by structuring element S is denoted by 

BoS and is defined as 

BoS=(B®S)EBS (3.10) 

The opening operation intends to eliminate small and thin objects, break objects at thin 

points, and generally smooth the boundaries of larger objects without significantly changing 

their area. The reason for this is that erosion removes small features in the image that can 

not be recovered by the successive dilation. At the mean time, big regions shrunk by the 

erosion are dilated back in the dilation step without changing their area. Therefore the 

overall effect is the elimination of "small" features (such as noise) and the conservation of 

the interested objects. This is shown in Figure 3.5. 
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The process of dilation followed by erosion is called closing. The closing of image B by 

structuring elementS is denoted by B•S and is defined as 

B • S = (B $ S) ® S (3.11 ) 

The closing operation intends to fill small and thin holes in objects, connect nearby objects, 

and generally smooth the boundaries of objects without significantly changing their area. 

The reason for this is that dilation fills out small holes and small gaps between objects to 

form one big region, which can not be broken by the following erosion operation as shown 

in Figure 3.6. 

s 
B 

B®S BoS = (B®S)$S 

Figure 3.5 An example of opening 
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The opening operation satisfies the following properties. 

I) B o Sis a subset (subimage) of B. 

2) If C is a subset of D, then C o S is a subset of D o S. 

3) (B o S) o S = B o S. 

s 
B 

Figure 3.6 An example of closing 

Similarly, the closing operation has the following properties. 

l ) B is a subset (subimage) of B • S . 

2) If C is s subset of D, then C • S is a subset of D • S. 

3) (B • S) • S = B • S . 

The last property is called idempotence, which means that the resulting image by 

opening or closing is invariant to further applying of the same operation. The practical 
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importance of idempotent transformations is that they comprise complete and closed stages 

of image analysis algorithms. 

3.3 Gray Scale Image Morphology 

Morphological concepts can be extended to gray scale image [1]. In binary 

morphological operation, the application of set theory is straight forward, while in the case 

of gray scale images, additional methods have to be provided. To generalize these concepts 

to a gray scale image, it is assumed that the image contains visually distinct gray scale object 

set against a gray background. Also, it is assumed that the objects and background are both 

relatively spatially smooth. 

In the following discussion, the input digital image function has the form f( x, y) and the 

structuring element function has the form b( x, y ). 

3.3.1 Gray scale image dilation and erosion 

Like the similar binary image operations, gray scale erosion and gray scale dilation 

operations are two most fundamental gray scale morphological operations. 

Gray scale dilation of/by b, denotedfffi b, is defined as 

(f tB b)(s,t) = max{f(s- x,t- y) +b(x, y) I (s -x,t- y) e D1 ;(x, y) e Db} (3.12) 

where Dt and Db are the domain off and b, respectively. Now b is a function instead of a set 

in binary case. 

Dilation is commutative. Interchange f and b in Equation 3.12 can be used to compute 

bffif The result is the same, and b now is the function translated. Because dilation is based 

on choosing the maximum value of if + b) in a neighborhood defined by the shape of the 
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structuring element, there are two basic effects of dilation operation on the gray scale image: 

( 1) if all the values of the structuring element are positive, the output image tends to be 

brighter than the input image; and (2) dark details are either reduced or eliminated. 

Gray scale erosion, denoted/® b, is defined as 

(f ®b)(s,t) = min{f(s+x,t+ y)-b(x,y) I (s+x),(t+ y)E D1 ;(x,y)e Db} 

where D1 and Db are the domain off and b, respectively. 

(3.13) 

Erosion is based on choosing the minimum value of if- b) in a neighborhood defined by 

the shape of the structuring element. There are two basic effects of erosion operation on the 

gray scale image: ( 1) if all the values of the structuring element are positive, the output 

image tends to be darker than the input image; and (2) bright details that are smaller in 

"area" than the structuring element are either reduced or eliminated. 

Dilation and erosion are duals with respect to function complementation and reflection, 

just like in binary case. That is: 

(f ® bt (x, y) = (fc Ea b)(x, y) 

where fc =-f(x, y) and b = b(-x,-y). 

3.3.2 Gray scale image opening and closing 

(3.14) 

The closing and opening operations introduced in binary image case can be easily 

extended to gray scale images. Gray scale closing is achieved by first performing gray scale 

dilation with a gray scale structuring element, and then by performing gray scale erosion 

with the same structuring element. The closing of image/by image (structuring element) b, 

denoted f• b, is 
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f. b = (f E9 b)® b (3.15) 

Similarly, gray scale opening is accomplished by gray scale erosion followed by gray scale 

dilation. The opening of imagefby image (structuring element) b, denotedfo b, is 

f 0 b = (f ®b) E9 b (3.16) 

The opening and closing for gray scale images are duals with respect to 

complementation and reflection. That is 

(J •bY = Jc ob 

where fc =-f(x, y), b = b(-x,-y). 

(3.17) 

In practical application, opening operation is usually applied to remove small (with 

respect to the size of the structuring element) light details, while leaving the overall gray 

levels and larger brighter features relatively undisturbed. The closing operation is generally 

used to remove dark details from an image, while leaving bright features relatively 

undisturbed. 
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CHAPTER 4. GENETIC ALGORITHM 

4.1 Introduction 

The Darwinian theory of natural evolution, especially the "survival of the fittest" 

principle, and the mechanisms of natural genetics are the basis for the Genetic Algorithm 

optimization techniques. The Genetic Algorithm imitates natural selection to identify the 

maximum/minimum of some objective function in a search space. Genetic algorithms are 

theoretically and empirically proven to provide a robust search in the complex solution space. 

They are computationally simple yet powerful in their search for improvement. Their main 

attractive characteristic is their ability to deal efficiently with hard combination search 

problems, where the parallel exploration of the search space eliminates to a large extent the 

possibility of getting stuck in local extrema. 

The Genetic Algorithm is based on the mechanism exhibited by nature incorporating the 

robustness, the efficiency, and the flexibility of biological systems. Genetic algorithms have 

been used to solve difficult problems with objective functions that do not possess "nice" 

properties such as continuity, differentiability, satisfaction of the Lipschitz Condition, etc. 

[12], [13], [14], [15]. These algorithms maintain and manipulate a family, or population, of 

solutions and implement a "survival of the fittest" strategy in their search for better solutions. 

This approach is based on the fact that individuals tend to pass on their traits to their 

offspring. In general, the fittest individuals of any population tend to reproduce and survive to 

the next generation, thus improving successive generation under particular ecological 

conditions. 
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Having been established as a valid approach to complex problems requiring efficient and 

effective search, genetic algorithms now have more widespread applications in business, 

scientific and engineering fields. This thesis presents the application of GA to the problem of 

Image Segmentation. 

4.2 Genetic Algorithm 

Genetic algorithms search the solution space of a function through the use of simulated 

evolution, i.e., the survival of the fittest strategy. Genetic algorithms have been shown to 

solve linear and nonlinear problems by exploring all regions of the state space and 

exponentially exploiting promising areas through mutation, crossover, and selection 

operations applied to individuals in the population, which is individual solutions (analogous 

to chromosomes) of the state space [15]. These operators, which rely on probability rules, are 

applied to the population, and successive generations are produced. In general, the starting 

search for an optimal solution begins with a randomly generated population of chromosomes. 

Each generation will have a new set of chromosomes obtained from the application of the 

operators. A fitness, or objective function, is defined according to the problem. The parent 

selection process ensures that the fittest members of the population have highest probability 

of becoming parents, in the hope that their offspring will combine desirable features, and 

have superior fitness, to both. The algorithm terminates either when a set of generation 

number is reached, or the fitness has reached a "satisfactory" level. The use of a genetic 

algorithm requires the determination of six fundamental issues: ( 1) chromosome 

representation, (2) selection function, (3) creation of the initial population, (4) genetic 
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operators making up the reproduction function, (5) fitness function, and (6) termination 

criteria. The Genetic Algorithm consists of the following steps: 

1. Generate the initial population. 

2. Evaluate the fitness of the each individual according to a fitness function. 

3. Select the fittest individual for mating. 

4. Apply reproductive operators (e.g. crossover, mutation) to create offspring. 

5. Evaluate the fitness of the offspring and select the fit individuals from the current 

generation and the offspring. They form the population of the next generation. 

6. Stop if stopping criterion is met, else go to step 3. 

A genetic algorithm is summarized in Figure 4.1, and each of the major components is 

discussed in detail below. 

Figure 4.1 A simple Genetic Algorithm 
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4.2.1 Solution representation (problem encoding) 

For any GA, a chromosome representation is needed to describe each individual in the 

population of interest. The representation scheme determines how the problem is structured 

in the GA and also determines the genetic operators that are used. Each individual or 

chromosome is made up of a sequence of genes from a certain alphabet. An alphabet could 

consist of binary digits (0 and 1), floating point numbers, integers, symbols (i.e., A, B, C, D), 

matrices, etc. In Holland's original design, the alphabet was limited to binary digits. Since 

then, problem representation has been the subject of much investigation. It has been shown 

that more natural representations are more efficient and produce better solutions [ 15]. One 

useful representation of an individual or chromosome for function optimization involves 

genes or variables from an alphabet of floating point numbers with values within the 

variables upper and lower bounds. Michalewicz [15] has done extensive experimentation 

comparing real-valued and binary GAs and has shown that the real-valued GA is an order of 

magnitude more efficient in terms of CPU time. He also shows that a real-valued 

representation moves the problem closer to the problem representation that offers higher 

precision with more consistent results across replications [ 15]. The technique for the solution 

representation may vary from problem to problem. In most of the work done so far, 

representation is carried out using bit strings. 

4.2.2 Selection function 

The selection of individuals to produce successive generations plays an extremely 

important role in the genetic algorithm. A probabilistic selection is performed based on the 
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individual's fitness such that the better individuals have an increased chance of being 

selected. An individual in the population can be selected more than once with all individuals 

in the population having a chance of being selected to reproduce into the next generation. 

There are several schemes for the selection process: roulette wheel selection and its 

extensions, scaling techniques, tournament, elitist models, and ranking methods [13], [15]. 

A common selection approach assigns a probability of selection, Pj, to each individual, j 

based on its fitness value. A series of N random numbers is generated and compared against 

the cumulative probability, C; = L:=I Pi, of the population. The appropriate individual, i, is 

selected and copied into the new population if C;.J < U (0, 1) $ C;, where U (0, 1) is uniformly 

distributed random number between 0 and 1. Various methods exist to assign probabilities to 

individuals such as roulette wheel, linear ranking and geometric ranking [13], [15]. 

Roulette wheel, developed by Holland [14], was the first selection method. The 

probability, P;, for each individual is defined by: 

P [individual i is chosen]= P ~. , 
""" op rze F . 
.L...ij=l 1 

(4.1) 

where F; equals the fitness of individual i. The use of roulette wheel selection limits the 

genetic algorithm to maximization since the evaluation function must map the solutions to a 

fully ordered set of values on fit. Extensions, such as windowing and scaling, have been 

proposed to allow for minimization and negativity. 

Ranking methods only require the evaluation function to map the solutions to a partially 

ordered set, thus allowing for minimization and negativity. Ranking methods assign P; based 
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on the rank of solution i when all solutions are sorted. Normalized geometric ranking, [16], 

defines P; for each individual by: 

P [Selecting the ith individual]= q' (1- q)'-1 (4.2) 

where: 

q = the probability of selecting the best individual 

r = the rank of the individual, where 1 is the best 

P = the population size 

q
,_ q 
- p 

1- (1- q) 

Tournament selection, like ranking methods, only requires the evaluation function to map 

solutions to a partially ordered set; however, it does not assign probabilities. Tournament 

selection works by selecting j individuals randomly, with replacement, from the population, 

and inserts the best of the j into the new population. This procedure is repeated until N 

individuals have been selected. 

4.2.3 Initialization 

The GA must be provided an initial population as indicated in step 2 of Figure 4.1. The 

initial population usually is randomly generated according to a uniform random distribution 

over the set of possible solutions. However, since GAs can iteratively improve existing 

solutions (i.e., solutions from other heuristics and/or current practices), the beginning 

population can be seeded with potentially good solutions, with the remainder of the 
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population being randomly generated solutions. In other words, the solution set may be 

altered if background information indicates that the search should be biased toward certain 

areas of the solution space. 

4.2.4 Genetic operators 

Genetic operators provide the basic search mechanism of the GA. The operators are used 

to create new solutions based on existing solutions in the population. There are three basic 

types of operators: reproduction, crossover and mutation. Reproduction [13] is a process in 

which individual strings are copied according to their fitness function values. Crossover takes 

two individuals and produces two new individuals while mutation alters one individual to 

produce a single new solution. The application of these three basic types of operators and 

their derivatives depends on the chromosome representation used. 

Let X and Y be two m-dimensional row vectors denoting individuals (parents) from the 

population. For X and Y binary, the following operators are defined: binary mutation and 

simple crossover. 

Binary mutation flips each bit in every individual in the population with probability Pm 

according to Equation 4.3. 

X; = ~1- Xp if U(0,1) < Pm 

X;, otherwise 

(4.3) 
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Simple crossover generates a random number r from a uniform distribution from 1 to m 

and creates two new individuals (X' andY') according to Equations 4.4 and 4.5. 

. ~xi' 
X;= 

yi' 

if i < r 

(4.4) 

otherwise 

'-lyi' Y;-

xi' 

if i < r 
(4.5) 

otherwise 

Michalewicz [15] developed operators for real-valued representations, i.e., an alphabet of 

floats. For real X and Y, the following operators are defined: uniform mutation, non-uniform 

mutation, multi-non-uniform mutation, boundary mutation, simple crossover, arithmetic 

crossover, and heuristic crossover. Let a; and b; be the lower and upper bound, respectively, 

for each variable i. 

Uniform mutation randomly selects one variable, j, and sets it equal to a uniform random 

number U (a;, b;): 

. ~u ( ai' b;), if i = j 
X;= 

X;, otherwise 

(4.6) 

Boundary mutation randomly selects one variable, j, and sets it equal to either its lower or 

upper bound, where r = U (0, 1): 
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ai' if i = j, r<0.5 

X;= bi' if i = j, r~0.5 (4.7) 

Xp otherwise 

Non-uniform mutation randomly selects one variable, j, and sets it equal to a non-uniform 

random number: 

where 

X;+ (b;- X; )f(G) if 'i < 0.5 

X;= X;- (X;+ a; )f(G) if 'i ~ 0.5 

X;, otherwise 

G h 
f(G) = (r2(1--)) , 

Gmax 

r 1, r2 =a uniform random number between (0,1), 

G = the current generation, 

Gmax = the maximum number of generations, 

b = a shape parameter. 

(4.8) 

(4.9) 

The multi-non-uniform mutation operator applies the non-uniform operator to all of the 

variables in the parent X. 
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Real-valued simple crossover is identical to the binary version presented above in 

Equations 4.4 and 4.5. Arithmetic crossover produces two complimentary linear 

combinations of the parents, where r = U (0, 1 ): 

x' = rX + ( 1- r) Y 

y' = (1- r) X+ rY 

(4.10) 

(4.11) 

Heuristic crossover produces a linear extrapolation of the two individuals. This is the only 

operator that utilizes fitness information. A new individual, x', is created using Equation 

4.12, where r = U (0, 1) and X is better than Yin terms of fitness. If x' is infeasible, i.e., 

feasibility equals 0 as given by Equation 4.14, then a new random number r is generated and 

a new solution is created using Equation 4.12; otherwise the crossover operation stops. To 

ensure halting, after t failures, let the children equal the parents and stop. 

x' =X +r(X-Y) 

y'=x 

!1, if x; ~ ai' x; 5: b; \;/ i 
feasibility = 

0, otherwise 

(4.12) 

(4.13) 

(4.14) 

The mechanics of reproduction, crossover and mutation are simple, involving random 

number generation, string copies, and some partial string exchanges. These processes in a GA 

search for best solutions. 



www.manaraa.com

35 

4.2.5 Fitness functions 

The fitness function is the link between the GA and problem to be solved. A fitness 

function returns a single numerical value that represents how fit the member is compared to 

the rest of the members in the population. Fitness functions of many forms can be used in a 

GA, subject to the minimal requirement that the function can map the population onto a 

partially ordered set. 

4.2.6 Termination (stopping criterion) 

The GA moves from generation to generation selecting and reproducing parents until a 

stopping criterion is met. The most frequently used stopping criterion is a specified maximum 

number of generations. Another termination strategy involves population convergence 

criteria. In general, GA will force much of the entire population to converge to a single 

solution. When the sum of the deviations among individuals becomes smaller than some 

specified threshold, the algorithm can be terminated. The algorithm can also be terminated 

due to a lack of improvement in the best solution over a specified number of generations. 

Alternatively, a target value for the evaluation measure can be established based on some 

arbitrarily "acceptable" threshold. Several strategies can be used in conjunction with each 

other. 

The search involved in Genetic Algorithm is from a population, not from a single point. 

Although it is randomized, GA is not a simple random walk. GA does not require any 

auxiliary information. It only requires a function value associated with each individual. This 

characteristic makes GA a more canonical method than many other search schemes. The 
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mechanics of GA involve nothing but copying strings and swapping partial strings. 

Simplicity of operations and effectiveness in finding the solution are two major attractions of 

GA. 

4.2. 7 Elitism and diversity 

Elitism intends to maintain the diversity of the population. It keeps certain amount of the 

top fittest individuals. After certain generations, these individuals may not be the good one so 

they are replaced by another set of fittest individuals. These individuals are kept in several 

generations again until they are out of date. Elitism is not necessary the way to bring the 

diversity into the population, the selection function will be designed to bring the diversity 

into the population also. At the same time, reproduction process will generate some diverse 

individuals for the selection process. 
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CHAPTER 5. IMAGE SEGMENTATION BASED ON GENETIC ALGORITHM 

AND MATHEMATICAL MORPHOLOGY 

Image segmentation is the fundamental process in image analysis. Segmentation 

algorithms basically identify homogeneous image regions, each corresponding to objects or to 

background. There are many segmentation methods as addressed in Chapter 2. In this chapter, 

we present a new Image Segmentation method based on Genetic Algorithm and Mathematical 

Morphology. 

5.1 Problem Statement 

In this thesis, the problem of detecting homogeneous regions in an image is addressed. We 

are concerned with identifying objects in a noisy image. As in a digitized image, the noisy 

image is represented by a matrix X with components, Xij, whose value represents the intensity 

of the pixel (i, j). The noisy image is produced by superimposing a noise component on the 

original image as described by the following equation: 

(5.1) 

Here,fij is the original image intensity and nij is the noise that is normally distributed with zero 

mean and variance ci. The original image in this study is composed of a single object intensity 

Ro embedded in a background of intensity Rb. The segmentation algorithm is performed on 

16x 16 subimages, and the resulting subimages are then combined to obtain the entire 

segmented image. 
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The 2-D 16x l6 subimage IS represented as a vector m 1-D as 

x = [x0. x 1 • •• • ••• , x 255 ], 0:::; X; :::; 255, where x; represents the intensity of the pixel in the ith 

position. Figure 5.1 shows the matrix of the 2D image and Figure 5.2 shows the 16xl6 noisy 

image with embedded L shaped object. 

x0 x1 x2 x3 

x16 x 17 x18 x19 

X 32 X33 X 34 X 35 

Figure 5.1 The subimage matrix 

Figure 5.2 2D 16x 16 noisy image 
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5.2 Approach 

The noisy image to be segmented can be any size. An appropriate subimage size is chosen 

based on the size of the original image. This limits the length of the chromosome to a 

reasonable size. After the image is divided into desired subimages, the algorithm for image 
I 

segmentation is applied to each subimage. The algo~ithm used to segment the noise image 

includes (i) generating initial population, (ii) evaluating every individual in the population, 

(iii) generating offspring by applying reproductive operators, (vi) moving to the next 

generation by allowing only the fittest individuals to survive. This process is iterated until the 

stopping criterion is met. Of all the populations in the final generation, the fittest individual is 

the segmented subimage. The resulting segmented subimages are then combined to form the 

entire segmented image. The steps mentioned above in the algorithm are explained in details 

next. 

5.2.1 Initial population 

A set of individuals has to be produced to create an initial population in GA. This set is the 

initial population of GA. Each individual in this set is a string with element value of Ro 

(object-intensity) or Rb (background-intensity). The initial population can be represented by 

the set, 

{Y/}, i = 0, 1, ... , 255; k = 1, 2, ... , N 

where N is the population size. 

To generate candidates in the initial population, random method was used. That is, each 

element in the vector is randomly chosen to be Ro or Rb. 
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Y/ = R0 or R 11 (randomly), i = 0, 1, ... , 255; k = 1, 2, ... , N 

Each vector represents an individual in the initial population. These vectors actually are 

string representation of the subimage. Figure 5.3 shows a typical randomly generated 16x 16 

subimage which is a candidate of the initial population. 

Figure 5.3 A candidate of initial population generated by random method 

This method does not depend on the knowledge of noise variance. Since this method is 

totally random in generating the candidates, the initial population size is kept high so that a 

large enough solution space is used to achieve better resu lts. Other methods generate the 

candidates for the initial population based on the knowledge of the noise variance. In this way 

the population size can be decreased compared to that used in the random method. But this 

requires the noise variance to be given by the user before generating an initial population. 
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5.2.2 Fitness evaluation 

A fitness function must be defined in order to evaluate the fitness of the individuals in the 

population. The fitness function is very important in GA. It helps to decide whether the 

individuals are capable of producing offsprings, whether the offsprings are fit enough to 

survive, and whether the individuals in the current generation are capable of existing in the 

next generation. 

If the original image is x and the initial population is 

{Y;k}, i = 0, 1, ... , 255; k = 1, 2, ... , N 

The fitness of an individual/(¥") of the population is calculated as: 

k = 1, 2, ... , N (5.2) 

where (5.3) 

k 1 k 
T (Y ) = 255 W; E neighboring pixel of Y; (5.4) 

L) Y/ -w; I 
i=O 

E(Y') is the measure of similarity between the individual Y' and the original noisy subimage. 

The goal here is to minimize the total difference between the noisy image of varying gray level 

intensity and the binary candidate subimage. The candidate subimage which has the least 

hamming distance to the noisy image has the highest E(Y'). The second term in the fitness, 

T(Y') is the reciprocal of the transition count in the horizontal and vertical direction. This term 
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is introduced in order to Jet the image with homogeneous regions have a better fitness than 

those with discontinuities do. In general, the fitter individuals will have a high T(Y) since the 

sum of the transition count will be low. a is the weighting factor that normalizes the two 

quantities E(Y) and T(Y ). 

To calculate the transition count, the 4 neighbors of every pixel are observed. If the pixel 

under consideration has a value R& and three out of the four neighbors have value R, then the 

transition count of that pixel is 3x1Rb - Rol. The corner pixels have only two 4-neighbors and 

the pixels on the edge of the image have only three 4-neighbors. Figure 5.4 is the noisy image 

with SNR = 2. Two candidates along with the similarity measure value E(Y) and transition 

count measure T(Y) are shown in Figures 5.5 and 5.6. It can be seen from these figures that 

the candidate in Figure 5.6 is homogeneous and has a higher T(Y) than the one in Figure 5.5. 

Figure 5.4 16x 16 noisy image with SNR = 2 
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Figure 5.5 Similarity: E(Y) = 5.6979xlo-s 

Transition count: T(Y) = 1.8904x 10-5 

5.2.3 Selection of fittest individuals 
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10 12 14 16 

Figure 5.6 Similarity: E(Y) = 9.9140x 10-5 

Transition count: T(Y) = 1.0417xl0-4 

Once the evaluation of the fitness of the individuals has been done, the fittest individuals 

must be selected so that they can be mated to produce offspring in the next generation. A very 

simple way to accomplish the selection used in this thesis is by defining a threshold <1>. 

<1> = Max( f)+ Min( f) 

2 
(5.5) 

Max({) and Min(j) are the maximum and minimum values of the fitness f, respectively. The 

individuals with fitness greater than the threshold are selected to produce offspring. 

Sometimes when <1> is small, in order that the search space does not get limited, a minimum 

number of offspring, 11 , is defined. If the number of generated offsprings is less than 11 then the 

threshold <1> is decreased so that more individuals are selected for the reproduction and the 

number of offspring generated by the selected individuals is more than the minimum req uired. 
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5.2.4 Reproduction 

This step is very important in the genetic algorithm because it is responsible for the 

evolution. The quality of final results depends on the GA operators in this step. The basic 

operators of reproduction, namely crossover and mutation are discussed in chapter 4. 

However, the implementation of these operators depend on a particular problem. In this thesis, 

morphological operations are used as reproduction operators on selected individuals before the 

two-point crossover and mutation operators are applied. Figure 5. 7 shows this procedure. 

MC'rphological Two-point 
Operations Crossover Mutation 

( closing+opening) 

Figure 5. 7 Reproduction Procedure 

5.2.4.1 Morphological operations 

Morphological operation used in the first step is "closing" followed by opening. The 

structuring elements of size 3x3, 5x5, and 7x7 were tried. Depending on the particular 

problem, different structuring element size are chosen. The element value was also varied by 

assigning 50, 100, and 200 to the entire element. These two operations tend to clear small 

holes or small blocks in the noisy image and render the object and background regions more 

homogeneous. Individuals pre-conditioned using morphological operation are then subjected 

to crossover and mutation operators to generate offspring. 
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5.2.4.2 Two-point crossover 

From earlier discussion in section 5.2.3, we know that not all the individuals in the 

population will produce offspring. Based on Equation 5.5, only the individuals with fitness 

better than the threshold <Dare considered fit to be parents. Two parents are randomly selected 

among these qualified individuals to perform a two-point crossover and produce two 

offspring. A minimum number of parents, P, is defined maintain a minimum number of 

qualified individuals. If the number of qualified individuals are less than P then the threshold 

<D is decreased in order to let more individuals to be qualified. The number of offspring, M, is 

also defined in order to maintain the population size in each generation. Assume that the total 

number of qualified individuals in the generation with population size N is K. Two of them are 

randomly selected for the crossover until the number of offsprings produced is greater than M. 

Let S denote the set of K individuals selected from the current generation. 

S = { Yj } 1 ::; i ::; K, 0 ::; j ::; 25 5 (5.6) 

Every two individuals in the set S generate two new offspring as follows. For each 

randomly chosen individual Y, i=1, 2, ... , K, two crossover points PI andp2 (0 <p1<P2 <255) 

are randomly generated. If y.i,j=1, 2, ... , K, is another randomly chosen individual in {S}, then 

the p2-p 1+ 1 elements of y.i, { Y1~ , Y ~+t , ••• , Y 1z } , are exchanged with the remaining 256-(p2-P 1+ 1) 

elements from in Y. The two new offspring created from yi, y.i in {S} can be represented as, 

i,j=1,2, ... ,K, Yi,Yie{S} 
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{Yoi '~ i , ... , Yrf.-• 'Y~, 'Y~,+l , ... , y~2 'y 1z+• 'y 1z+2 , ... , y fss} 

i' j = 1' 2, ... ' K' y j 'y j E { s} 

Among all this individuals, only fittest N (population number) of them is selected to survive. 

5.2.4.3 Mutation 

The reason that the mutation operator is introduced is because that, in nature, a living 

being undergoes some changes in its characteristics due to the influence of the surroundings. 

The mutation operations is intended to adapt the candidate better to its surroundings. The 

mutation operator is applied to those existing individuals in our study in a similar way in order 

to develop traits that make them fitter for survival. The mutation operator does not produce 

new offspring but it improves the fitness of the individual. The procedure to apply the 

mutation operator to an individual is as follows: 

Each bit (pixel value) in an individual is modified depending on the value possessed by the 

majority of its neighbors. For each bit x; in the individual Y/ the neighborhood C is defined 

and considered. It is similar to the 8-pixel neighborhood or 4-pixel neighborhood. If Nb is the 

number of background pixels and No is the number of object pixels in C then 

if Nb >No 
if Nb <No 

i = 0,1, ... ,255, k = 1,2, .... ,N (5.7) 
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(a) 4-pixel neighborhood (b) 8-pixel neighborhood 

Figure 5.8 Different neighborhoods 

Figure 5.8(a) shows the typical 4-pixel neighborhood and figure 5.8(b) shows the 8-pixel 

neighborhood. In case (a) , the center pixel is the pixel under consideration with Nb = 3 and N0 

= 1. Since Nb>N0 , the center pixel is changed from Ro to Rb. In case (b), Nb = 5 which is 

greater than N0 = 3, hence the center pixel is also changed from Ro to Rb. 

5.2.5 Next generation 

After the reproduction operators have been applied to the selected individuals, there are 

total N + K(K-1 ) individuals in the current population. The fitness of each individual is then 

evaluated using the fitness function in Equation (5 .2). The fi ttest N individuals are selected to 

form the next generation. Generally, if there are more than one individual with the same 

fitness value and the same element value, only one of them is randomly selected to prevent 

GA getting stuck in the local extrema. 
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5.2.6 Stopping criterion 

The genetic algorithm evolves from one generation to the next generation and eventually, 

all individuals in the population will have the same (or very close) fitness after a certain 

number of generations, indicating that convergence is reached. Typically the algorithm will 

stop at this point because further processing will not improve the quality of the individuals. In 

this study, the algorithm is stopped either after a fixed number of generations or the maximum 

and minimum fitness of individuals are in a desired range. 

5.3 Parameters that Affect the Performance of the Algorithm 

The various parameters of the algorithm have to be chosen carefully in order to solve the 

problem effectively. The next section provides a brief discussion of parameters that affect the 

performance of the algorithm. 

5.3.1 Population size 

Population size is the number of individuals at a given time in the population. In this 

study, a fixed population size is used through all the generations. The size of the population is 

directly proportional to the run time of the algorithm. A small population size speeds up the 

search. But on the other hand, the smaller the population size, the more generations the 

algorithm needs to find the best results. Hence there is a trade off between the population size 

and number of generations. 
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5.3.2 Fitness functions 

For a given problem, the fitness function can be chosen in a number of ways which reflect 

the flexibility of the genetic algorithm. The choice of a proper fitness function is very 

important because the performance of the algorithm depends critically on the fitness function 

chosen. If the fitness function is not appropriate, it is possible the average fitness increases 

from one generation to the next generation, but the results obtained are far away from optimal. 

Hence care must be taken while choosing the fitness function since the wrong choice of fitness 

function may lead to total failure of the algorithm. 

5.3.3 Structuring element size 

The size of the structuring element used in the morphological operation also depends on 

the nature of the image. The ideal size of the structuring element is chosen such that the 

morphological operation eliminates the small holes and speckles or noise pixels in the 

background. Different size of the structuring element has been studied and the results are 

presented in the next chapter. So far, there are no theoretical considerations on the optimality 

of the size of structuring element. 

5.3.4 Crossover techniques 

There are various methods for crossover. Normally, individuals in the mating pool 

produce an offspring with every other individual. A probability concept can also be introduced 

so that each individual mates with the remaining individuals with a certain probability. Based 

on specific properties of digital images, other crossover techniques have also been studied. 
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These complicated techniques may affect the simplicity of the algorithm and there is therefore 

a tradeoff between complexity of computation and accuracy of segmentation results. 

5.3.5 Mutation techniques 

The mutation technique used in this study is based on the neighborhood of each bit (pixel 

value) in the candidate, where each bit is trapped if the majority of the neighbors is different 

from the pixel under consideration. Another way to do the mutation is to define a mutation 

rate and randomly flip bits. Using a 8-pixel neighborhood bits can be flipped with some 

induced probability instead of just count the object or background intensity pixel number. This 

can modify the mutation operator used in this study. 

5.3.6 Selection function 

A selection function is necessary to decide the pool of individuals in the population that 

can be used for producing the offspring for the next generation. One way is to simply decide a 

fixed number of individuals to be selected based on their fitness evaluations. Another way is 

to define a threshold as discussed in section 5.3.2. The latter method brings more flexibility 

because we can select the best-fit individuals with no limitation on the quantity. If the number 

of the qualified individuals is less than the minimum number requirement, the algorithm will 

decrease the threshold value to let more individuals to be selected. By doing this, every time a 

different number of individuals is selected to produce offspring and the diversity of the 

population has been maintained. 
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5.3. 7 Stopping criterion 

In this study, the stopping criteria used are ( 1) the average fitness does not change from 

one generation to the next, and (2) a maximum number of iterations are performed. There are 

some other stopping criteria which are all related to the convergence of the average fitness. 

Convergence is also defined in different ways. Sometimes the average fitness oscillates within 

a certain range. In this case, a range is defined so that if the difference between the maximum 

and the minimum of the average fitness during several generations is in this range, the 

algorithm is converged. 

In the next chapter, some simple simulated images are used to investigate the effects of 

above parameters on the performance of the algorithm on images of varying signal-to-noise 

ratio (SNR) and different objects. 
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CHAPTER 6. RESULTS AND DISCUSSION 

The application of genetic algorithm to image segmentation in combination with 

morphological operations as the reproduction operators is studied. The role of different 

parameters of the algorithm is also studied to get better understanding of this algorithm. 

These results are presented and discussed in the following sections. 

6.1 Population Size 

The initial population was generated randomly. The population size was chosen to be 50, 

100, 150 and 200. The maximum number of generation was selected to be 100. The study 

was conducted on images of size of 16x 16 with Ro = 150 and Rb = 50. The noisy image was 

produced by superimposing a random gaussian noise with zero mean and with certain 

variance on the clear images. The noise variance cr2 was 2500 and 4000, and the 

corresponding signal to noise ratio (SNR) equals to 2 and 1.58, respectively. The result for 

population size 50 is shown in Figure 6.1: (a) the original image, (b) the noisy image with 

SNR = 2, (c) one candidate of the initial population and finally (d) the segmented image. 

Figure 6.2, shows the comparison of segmented images using the same parameters for the 

population size 50, 100, 150 and 200, respectively. For all these different initial population 

sizes, the candidates are selected from the same population, i.e., the initial population was 

generated once and then selected to form different initial population size. 
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Original image Noisy image: SNR = 2 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.1 Results for 16x 16 image with L Shape Object 

(SNR = 2, population size = 50) 
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Initial Population Size= 50 Initial Population Size= 100 

a b 

Initial Population Size= 150 Initial Population Size= 200 

c d 

Figure 6.2 Comparison of segmented image using different sizes of 

initial population (SNR = 2) 
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The same study was also conducted on images of SNR = 1.58. The results presented in 

Figure 6.3 show (a) the original image, (b) the noisy image with SNR = 1.58, (c) one 

candidate of the initial population and finally (d) the segmented image. Figure 6.4 shows the 

comparison of segmented images for the population size 50, 100, 150 and 200. The plots of 

the reciprocal of the average fitness with respect to the number of generations are also 

presented in Figure 6.5 and Figure 6.6 for SNR = 2 and SNR = 1.58, respectively. 

From these results, we could draw the conclusion that the initial population size should be 

around 100. Even though the size of 150 and 200 sometimes may give better results, it is still 

computationally expensive. Although this study is only concentrated on the L shape object 

image, some other images with different objects are studied later. Those results also confirm 

the conclusion that for 16x 16 images, population size less than 50 will not optimal. 

Considering the reciprocal of the average fitness, it can be seen from Figure 6.5 and 6.6 

that with increasing initial population size, the convergence of the algorithm will get faster 

but it is not so obvious when the population size is larger than 100. Also, the reciprocal of 

average fitness shows that the quality of the segmented image does not improve with initial 

population size larger than 100 while the computation time gets longer and longer. On the 

other hand, the algorithm converges to a certain point after 20 generations with the 

population size between 100 and 200. 

Studies in this section focus on the image with SNR = 2 and SNR = 1.58. Later in this 

chapter, the application of this algorithm on low contrast images with SNR = 1 will be 

discussed. 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.3 Results for 16x 16 image with L shape object 

(SNR = 1.58, population size = 50) 
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Initial Population Size= 50 Initial Population Size= 100 

a b 

Initial Population Size= 150 Initial Population Size= 200 

c d 

Figure 6.4 Comparison of segmented image using different sizes of 

initial population (SNR = 1.58) 
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Figure 6.5 Reciprocal of average fitness for initial population: 

(a) 50, (b) 100, (c) 150, (d) 200 with SNR = 2 
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Figure 6.5 (continued) 
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Figure 6.6 Reciprocal of average fitness for initial population: 
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Figure 6.6 (continued) 



www.manaraa.com

62 

6.2 Number of Generations 

The study was first conducted on 16x 16 noisy image with SNR = 2. The initial population 

size was chosen to be 50, 100, 150 and 200. The algorithm was made to stop after 100 

generations. Figure 6.5 shows the plots of reciprocal of the average fitness versus the number 

of generations. It can be seen from the plots, that the reciprocal of the average fitness 

decreases very steeply in the first 10 to 20 generations. After that the function remains almost 

constant. The study was then conducted on 16x 16 noisy image with SNR = 1.58. The results 

are shown in Figure 6.6 with population size chosen to be 50, 100, 150 and 200. It is safe to 

say that the maximum fitness was attained after the fiftieth or sixtieth generation. The 

stopping criterion was therefore changed and the algorithm was stopped after 60 generations. 

6.3 Reproduction 

In the reproduction stage of the algorithm, all the individuals in the population are 

subjected to morphological processing (closing followed by opening). Then the fitness of all 

the new candidates is evaluated and those with the fitness better than the average fitness are 

selected for the next step: crossover. The original individuals and the offsprings generated by 

the crossover operation are then selected to maintain the same size of population based on the 

fitness evaluation. In this section, we first discuss the effect of structuring element size and 

value on the algorithm and then a new crossover technique is presented. 
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6.3.1 Structuring element size and element value 

The size of structuring element used in the morphological operation is studied using the L 

shape image to find the best size of structuring element. The initial population size here is 

100. For the noisy image with SNR = 2 and SNR = 1.58, the structuring element of size 3x3, 

5x5 and 7x7 are tested in the algorithm. Figure 6.7 shows the result using structuring element 

size of 3x3 and element value of 100 for noisy image with SNR = 2. Figure 6.8 shows similar 

result on a noisy image with SNR = 1.58. Figure 6.9 shows the results for element size of 5x5 

and 7x7 with element value 100 for the noisy image with SNR = 2. Figure 6.10 shows the 

results for element size of 5x5 and 7x7 with element value 100 for the noisy image with SNR 

= 1.58. 

From these results, it is clearly indicated that for this image, the optimal size of 

structuring element is 5x5. However, it is very important to note that the optimal size of the 

structuring element depends strongly object size in the image. 

To study the effect of structuring element size on this algorithm, different object noisy 

images were tested using size of 3x3 and 5x5 structuring elements with element value 100. 

All the other parameters are kept constant. In Figure 6.11 and 6.12, a two-block objects are 

presented in the image. Structuring element size of 3x3 and 5x5 were tried. As we can see in 

Figure 6.12, the quality of the segmented image is much better if the structuring element size 

reduced to 3x3. A curved object image is also studied using structuring element of size 3x3 

and 5x5. The results are shown in Figures 6.13 and 6.14. Again, the quality of the segmented 

image using a 3x3 structuring element is much better, than that obtained using larger 

structuring elements. 



www.manaraa.com

64 

Original image Noisy image: SNR = 2 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.7 Results of 16x16 noisy image (SNR = 2) 

with structuring element of size 3x3. 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.8 Results of 16x 16 noisy image (SNR = 1.58) 

with structuring element of size 3x3 
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Structuring Element Size = 5X5 Structuring Element Size= 7X7 

Figure 6.9 Results of 16x16 noisy image (SNR = 2) 

with structuring element of size 5x5 and 7x7 

Structuring Element Size = 5X5 Structuring Element Size = 7X7 

Figure 6. 10 Results of 16x16 noisy image (SNR = 1.58) 

with structuring element of size 5x5 and 7x7 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.1 1 Results of 16x16 Two-Block object noisy image (SNR = 1.58) 

with structuring element of size 5x5 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.12 Results of 16x 16 Two-Block object noisy image (SNR = 1.58) 

with structuring element of size 3x3 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

, . 

• - ••••• • •.• -· • +• •••• .• : ... .. "' • ~ 

c d 

Figure 6.13 Results of 16xl6 Curved object noisy image (SNR = 1.58) 

with structuring element of size 5x5 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6. 14 Results of 16x l6 Curved object noisy image (SNR = 1.58) 

with structuring element of size 3x3 
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We also used threshold method with closing operation to segment the noisy image. The 

threshold value is 100, i.e., the pixel value is set to 150 for noisy image if it is great than 100, 

otherwise, it is set to 50. After the thresholding, the closing operation is applied to the 

thresholded image. The results are shown in Figure 6.15. It clearly indicate that threshold 

method with closing operation is not suitable for this problem. 

Another important parameter is the value of the structuring element. The results for a 5x5 

structuring element with element value 50 are shown in Figure 6.16. The results for the same 

structuring element size but with element value 500 applied to the same noisy image with the 

same initial candidates are shown in Figure 6.17. From these two results, it can be seen that a 

higher element value does not necessarily give a better result. Further investigation on image 

of Figure 6.18 was done with structuring element of size 3x3 and element value of 100, 0 and 

-50. Figure 6.18 shows the results with no morphological operation. Figure 6.19 shows the 

results after adding morphological operation with the 3x3 structuring element with element 

value 100. Figure 6.20 shows similar results obtained using two different element values 

namely, (a) element value equal to -50 and (b) element value equal to 0. From these results, 

one can see that the morphological operation does improve the quality of the segmented 

image. But so far, there is no definite procedure for selecting the optimal values of 

structuring element size as well as the element value. 
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Noisy image: SNR=1 .58 After thresholding and closing 

a b 

Figure 6.15 Results of thresholding method with closing operation 

6.3.2 Crossover 

The algorithm has been applied to 2D image data instead of the conventional lD signal. 

Due to the complexity of the 2D image, the conventional two-point crossover is replaced by a 

new multi-point crossover technique developed to exploit the properties of 2D image. 

Since the fitness of all the individuals are evaluated after the morphological operation, 

those with fi tness better than the average fitness are selected for the crossover operation. 

After the parents are selected, two random numbers are generated to select two individuals 
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Original image 

a 

One candidate of initial population 

c 
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Noisy image: SNR = 1.58 

b 

Segmented image 

d 

Figure 6.1 6 Results for structuring element of size 5x5 with element value 50 
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Original image 

a 

One candidate of initial population 

c 
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Noisy image: SNR = 1.58 

b 

Segmented image 

d 

Figure 6. 17 Results for structuring element of size 5x5 with element value 500 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

.... .. . . 

• 0 0 0 • 0 0 0 .... ) 0 0 0 -~ ) 0 0 0 ... •' .. 0 0 ·A· • 0 0 + A • 

c d 

Figure 6. 18 Results of Slope shape object with no morphological operation 
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a 

One candidate of initial population 

c 
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Noisy image: SNR = 1.58 

b 

Segmented image 

d 

Figure 6.19 Results for structuring element of size 3x3 with element value 100 
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a b 

Figure 6.20 Results of Slope shape object with structuring element of size 3x3 

(a) element value: -50 (b) element value: 0 (SNR = 1.58) 

from these parents. 

Assume the noisy image is :X, the two randomly selected candidates are yl and ym , 

where I ~ l,m ~ N. N is the population size. The pixel-wise fitness is defined by finding the 

absolute difference between the noisy image pixel and the candidate image pixel as follows: 

j (i) =I:X(i) - Y/ I where 0 ~ i ~ 255, 1 ~ k ~ N (6.1) 

The average fitness is defined as: 

255 

fav = 2~6LJ(i) (6.2) 

i=O 

If the pixel wise fitness of the first candidate image is better than the average fitness of 

this candidate, the pixel value is kept. Otherwise, the pixel value is exchanged with the 

corresponding pixel value of the second candidate. By doing this, two offspring with multi-
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point crossover are produced. In some cases, the new multi-point crossover technique 

improves the quality of segmented image. Figure 6.21 and 6.22 show the results of these two 

crossover techniques applied on small object image. All the other parameters in the two 

algorithms are the same. 

Original image 

a 

One candidate of initial population 

c 

Noisy image: SNR = 1.58 

b 

Segmented image 

d 

Figure 6.21 Results for two-point crossover technique with small object 
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Original image 
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One candidate of initial population 

c 

Noisy image: SNR = 1.58 -· ----iJ -. • • 
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b 

Segmented image 

d 

Figure 6.22 Results for multi-point crossover technique with small object 
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6.3.3 Mutation 

The mutation operator used in this algorithm is a 4-neighborhood mutation. The reason 

for choosing this is that the 4-neighborhood mutation does not eliminate small objects. 

Another extended mutation operator is based on the 8-neighborhood and it only performs 

well on continuous large objects. Objects of small size have been studied to further 

investigate the mutation operator. The results are presented in Figures 6.23 and 6.24. For this 

small object, it is clearly shown that the 4-neighborhood mutation is much better than 8-

neighborhood. After all the offspring are generated and the mutation operator is applied, the 

individuals for the next generation are selected based on their fitness. 

6.4 Application to Larger Images 

To apply this algorithm to large images, the larger image needs to be divided into 16x 16 

subimages first. The algorithm is then applied to these subimages and the segmented 

subimages are combined to form the final result. The study is conducted on a multi-object 

image with SNR = 1.58. The size of structuring element is 3x3 and the two-point crossover 

technique is used. The result shown in Figure 6.25 indicates that the algorithm successfully 

segmented the four objects with different shapes and sizes. Further investigation has been 

done with varying the structuring element size and the multi-point crossover technique. The 

results shown in Figure 6.26 used both 5x5 and 3x3 structuring elements on the subimages 

and those with better final average fitness are selected and are combined to form the final 

segmented image. At the same time, the multi-point crossover technique is used for all the 
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Original image 

a 

One candidate of initial population 

c 
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Noisy image: SNR = 1.58 

b 

Segmented image 

d 

Figure 6.23 Results of 8-neighborhood mutation for small object 
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One candidate of initial population 

c 
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Noisy image: SNR = 1.58 

b 

Segmented image 

d 

Figure 6.24 Results of 4-neighborhood mutation for small object 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.25 Results of 64x64 image with two-point crossover and 

structuring element of 3x3 
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Original image Noisy image: SNR = 1.58 

a b 

One candidate of initial population Segmented image 

c d 

Figure 6.26 Results of 64x64 image with multi-points crossover and 

varying structuring elements (3x3 or 5x5) 
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subimages. The segmented image in Figure 6.26 is more accurate even though there is a 

misconnection between top two objects. 

6.5 Application to Low Contrast Images 

In low contrast images, the object intensity (Ro) and background intensity (Rb) are 125 

and 75, respectively. A random gaussian noise is added to the images with cr2=2500 to get a 

SNR = 1. The algorithm with new multi-point crossover technique was used. All the other 

parameters were optimized as discussed in previous sections. The results are shown in 

Figure 6.27. It is clearly shown that the algorithm works well on low contrast and low SNR 

Images. 
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Original image 

a 

One candidate of initial population 

c 
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Noisy image: SNR = 1 

b 

Segmented image 

d 

Figure 6.27 Results of low contrast images (SNR = 1) 
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

The final goal of this thesis is to develop and study the feasibility of an Image 

Segmentation technique that is based on the Genetic Algorithm and Mathematical 

Morphology. In this approach, image segmentation is considered as an optimization 

problem and it is carried out using genetic algorithms. Genetic algorithms are based on 

the evolution theory also known as "survival of the fittest" principle. In genetic algorithm, 

an initial population of candidates is required to start the evolution. All these individuals 

are generated based on the problem to be solved. In the process of reproduction, the 

morphological operations are used before crossover and mutation. The effect of 

mathematical morphology is to fill small holes and eliminate the small speckles. After the 

morphological operation, the fitness of all the individuals is evaluated and only the fitter 

candidates are allowed to produce offsprings. The offspring so created tend to inherit the 

"best feature" of their parents. Generation after generation, the overall fitness of the entire 

population is improved and finally each individual in the population is as good as others 

in the sense of being the fittest individual. 

7.1 Summary 

The proposed approach has been applied to 16x 16 noisy images with pixel intensity 

varying from 0 to 255. The size of the subimage is optimized based on the experimental 

results and the computation time. The algorithm can be applied to any size images as long 

as these images are divided into 16x 16 subimages. These sub images can be processed 

independently and can be combined to form final segmented images. 
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Initially, the populations of size N are generated randomly based on the knowledge of 

the object and background intensity. The size of the population is pre determined and all 

the individuals are represented in a string format with the same size as the subimage. 

Instead of having various intensities as in the noisy subimage, the candidates are binary 

strings of value Ro (object intensity) or Rb (background intensity). 

The most critical step in GA is the reproduction because it is responsible for 

evolution. There are three steps in reproduction ( 1) mathematical morphology to produce 

parents from the individuals in the population, (2) crossover of the "fitter" parents to 

produce offsprings and (3) mutation of top ranking individuals chosen from old 

population and the new offspring. The morphological operation is necessary for large 

objects because it tends to remove small spikes in the background and fill in small holes 

in objects (usually less than 3x3 pixels). After the morphological operation, the fitness of 

all candidates is evaluated based on the fitness function and a certain number of 

candidates are selected to the mating pool. In mating process, two different crossover 

techniques are presented. In one of the techniques, the two parents are randomly chosen 

and the two cross points are randomly generated. In the other technique, after the two 

parents are randomly chosen, the pixel wise fitness is compared to the average fitness. 

Based on the difference, two new offsprings are produced. After the fitness of the 

offspring is evaluated and the top ranking individuals are selected, the mutation operator 

is applied to the population to add some diversity and form the next generation. In 

mutation operation, a 4-pixel neighborhood is defined and the value of the pixel is flipped 

depending on majority pixels in the neighborhood. 
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The next generation has the best N (population size) candidates from the previous 

generation and their offsprings. The algorithm is terminated after a fixed number of 

generations or convergence of the average fitness value is achieved. 

7.2 Conclusion 

An exhaustive parametric study of the algorithm on image segmentation was 

performed. The parameters that affect the performance of the algorithm were studied and 

discussed. The following observations can be made: 

1. The initial population is generated randomly and no knowledge of the noise 

distribution is needed. 

2. The optimal population size in each generation is seen to be around 100. 

3. The algorithm was terminated after 60 generations because the results do not show 

significant improvement after 50 generations. 

4. The optimal size of the structuring element is 5 x5 for the 16x 16 sub image with single 

object or two objects away from each other. But for small object or multiple objects 

which are close to each other, it is better to use a 3x3 structuring element. 

5. The new multi-point crossover technique gives better results than the two-point 

crossover technique. It also brings the diversity into the population. This is one of the 

reason that it gives better results. 

6. The algorithm is simple, fast and works very well on low signal-to-noise ratio image 

and on large size image. 
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7.3 Future Work 

Future work must be mainly concentrated on the improvement and efficiency of the 

algorithm. There are several aspects which may improve the algorithm: 

1. Different methods to generate initial population. Instead of randomly generating the 

initial population, a certain probability may be used depending on the neighborhood 

of the corresponding pixels in the noisy image. An alternative choice is a threshold 

image. 

2. Different fitness function to evaluate the fitness of the candidates. More precise 

measurement may be used instead of just using the summation of pixel wise error. 

3. Different selection criteria to select individuals for the mating pool. After the fitter 

individuals are selected, a small number of randomly selected individuals should be 

selected to bring more diversity into the mating pool. 

4. Parallel genetic algorithm can be implemented. Since the evaluation of the fitness is 

the same with all the individuals, it can be done parallel to increase the speed of the 

algorithm. 

5. The gradient searching method can be combined with GAin the algorithm to save the 

search time and avoid stuck in the local extrema. 

6. The population size need not be kept constant. In each generation, the population size 

may be changed depending on the quality of the individuals in the population. At the 

same time, new candidates may be introduced into the population to diversify the 

population (i.e. to jump out of the local extrema). 
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7. The stopping criteria can be varied. Currently the evolution is stopped either after a 

certain number of generations or when the average fitness is almost a constant. But in 

reality, the average fitness oscillates back and forth within certain range. A new 

stopping criteria need to be developed to include this phenomenon so that the 

algorithm can stop whenever oscillations occur. 

In the real segmentation problem, the object and background intensity may not be 

known in advance. Furthermore, the image may have multiple objects with different 

object intensity. In this case, the histogram may be calculated for subimages to get the 

object and the background intensity. But this depends on the noise distribution of the 

subimage and the size of the subimage because the peaks of object intensity and 

background intensity may be buried in noise signal if the subimage size is not large 

enough. 

Finally, genetic algorithm is still a developing technique in digital image processing 

area. Although, this is the first time we combine mathematical morphology and GA the 

results obtained are very promising and is therefore worth studying further. Many 

improvements can be introduced into the basic proposed algorithm for enhancing the 

computation time of the algorithm and accuracy of the results. 
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APPENDIX. IMAGE SIGNAL TO NOISE RATIO MEASUREMENT 

In the development of image enhancement, restoration, and coding techniques, it is useful 

to have some measure of the difference between a pair of similar images. The most common 

difference measure is mean square error. The mean-square error measure is popular because it 

correlates reasonably with subjective visual quality tests and it is mathematically tractable. 

Consider a discrete image FG, k) for j = 1 ,2, ... , J and k = 1 ,2, ... , K, which is regarded as a 

reference image, and consider a second image F'G, k) of the same spatial dimensions as FG, k) 

that is to be compared to the reference image. Under the assumption that FG, k) and F'G, k) 

represent samples of a stochastic process, the mean-square error between the image pairs is 

defined as 

~MSE = E{l F(j,k)- F'(j,k) 12 } (1) 

where E{.} is the expectation operator. The normalized mean square error is 

;: = E{l F(j,k)-F'(j,k) 12 } 

~ NMSE E { I F ( j' k) 12 } 
(2) 

Error measures analogous to Equations 1 and 2 have been developed for deterministic 

image arrays. The least-squares error for a pair of deterministic arrays is defined as 

1 J K 

~I.SE = -I,I,I F(j,k)- F'(j,k) 12 

JK i=t k=t 

and the normalized least -squares error is 

(3) 
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J K 

I, I, I F(j,k)- F'(j,k) 12 

~NLSE = j=l k=l J K (4) 
I,I,I F(j,k) 12 

j=l k=l 

Another common form of error normalization is to divide Equation 3 by the squared peak 

value of x. This peak least-squares error measure is defined as 

J K 

I, I, I F(j,k)- F'(j,k) 12 

~PISE = }•I k=~max{F{j,k)})2 (5) 

In the literature the least-squares error expression of Equations 3 to 5 are sometimes called 

mean-square error measures even though they are computed from deterministic arrays. Image 

error measures are often expressed in terms of a signal-to-noise ratio (SNR) in decibel units, 

which is defined as 

SNR = -10log 10 {~} (6) 

A common criticism of mean-square error and least-squares error measures is that they do 

not always correlate well with human subjective testing. In an attempt to improve this 

situation, a logical extension of the measurements is to substitute processed versions of the 

pair of images to be compared into the error expressions. The processing is chosen to map the 

original images into some perceptual space in which just noticeable differences are equally 

perceptible. 
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